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Abstract. For neurophysiologists not normally engaged in modeling and simulation, we
introduce the subjects. The availability of low-cost, high-performance digital computer sys-
tems allows the development of detailed models, and their simulations, which can greatly aid
the progress of experimentation. We review the ready-to-use simulation routines on IMSL
Inc. libraries. Problems of error analysis in numerical methods are discussed. The virtues of
gencral-purpose workstations for computer-aided-engineering are listed, and the applicz;tion of
such workstations to neural modeling is pointed out. This paper is the first of two--the
second provides a detailed look at a particular example of modelling: Plasticity in kitten

visual cortex.
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Introduction

A neurophysiologist takes pride in understanding how at least a small part of an animal'’s
nervous system functions. The understanding ultimately is built upon knowledge gained by
direct observation and experimentation with animals. In this and a subsequent paper, we
address an important ladjunct to direct experimentation -- expressing hypotheses as quantitative
relationships (models) and simulating the models to verify or predict in detail the outéome of

experimental tests.

This first paper discusses:
(1) When modeling and simulation are appropriate,

(2) How to begin the process of modeling and what features a good model will have,
(3) A guide to simulation techniques and error analysis,

(4) General-purpose layout and simulation packages for logic circuit design and their possible
value in neurophysiological modeling and simulation.

The first paper is intended to interest experimentalists who normally do little or no model-
ing in connection with their research. In the second paper, we explain in detail a model for
development of single neuron plasticity in the mammalian visual cortex. By focusing on
development, our model naturally features the use of differential equations to describe growth
processes. By considering the simultancous responses of many neurons, our model requires the
use of matrir algebra to describe the strengths of interconnections in a network. More experi-
enced modelers may be engaged by the second paper; we hope they will not be slighted by our
omission of other, classic and well-known neurophysiological models, from Hodgkin & Huxley’s

to Schwartz' and Grossberg's work.

Distinction between modeling and simulation. A model is a representation of some-

thing important by something convenient. For us, “‘convenient” will mean a mathematical
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Guldelines for Modeling

relationship, presumably based on an underlying mechanism which explains the “important”
results of experiments. In some cases, solution of a model’s differential equations, for an initial
condition and a definite input, will provide an analytical formula, which will show once a par-
ticular relationship between variables and parameters. The analytical solution is desirable, but
the sometimes not feasible, or can be obtained only in limited contexts or with unwarranted
assumptions. In such cases simulation helps. Simulation is an algorithmic search for the
answer to a modeling problem, given a particular starting point and driving function. Numer:-
cal analysis embodies the set of general techniques for implementing the simulation, usually on
a digital computer.

Relevance. Bevond their obvious usefulness in hypothesis testing, two other phenomena
help make modeling and simulation relevant for all neurophysiologists:
(1) The continuing decline in the price of fast computing machines with large memories,
friendly operating systems, and good graphic capabilities, make simulations of large or complex
systems feasible to more researchers. We think compler models are best built with simple com-
ponents (modules), however numerous and interconnected the components may be. The temp-
tation to use computing power to simulate ad hoc arrangements of empirical relationships
should be resisted. Later in this paper (Part 4) we will indicate that computer-aided-
engineering (CAE) systems for digital circuit design offer features which help organize modeling
around hicrarchical modules,
(2) The growing demands of animal rights activists, and some politicians, to encourage
rescarchers to substitute computer simulations for direct experimentation on mammals make
simulation seem more valuable than it really is. Much emotional prose has been written about

animal rights and unfriendly questions will continue to be asked about the necessity of animal
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N experimentation. It will behoove researchers involved in mammalian experimentation at least Py
' .
to be aware of the limitations and virtues of simulation, if for no other reason than to answer -
L 1
t
. . . . ]
X the inevitable questions. Researchers should appreciate, however, that demands often go "
¥
) beyond relatively straight-forward issues of animal care and surgical anesthesia; rather the
matter for many seems to be justification for any use of mammals in research3’. We can note N
A that research done only by simulation is not science at all but an exercise in precision specula- by
tion. In such a case, the frustrations of researchers seeking to test their models on animals will N
. be matched only by the hypocrisy of people who rally against the use of cats, dogs and mon- “A
N keys in biomedical research while those same people are willing to accept medical diagnoses -
and treatments developed in animal experimentation research. 7
1. When should modeling be attempted? =
[- Careful unbiased observation, often with the aid of elaborate equipment, generates raw N
Y
g data. Computer graphics can help in the presentation of data, allowing the researcher to view -
. ,
; it from different perspectives. Statistical summaries can help compress the data presentations. .
i‘ ”‘
. The researcher spots a pattern and further organizes the data into relationships which accentu- A
. ’
: ate the pattern. An underlying cause for the pattern is postulated. How precisely a cause- )
. and-effect relationship can be formulated determines if the idea becomes a model. If the R
\ research is at such a preliminary stage that major qualitative tssues are undecided, then model- 3
% .
fng is premature®. Some researchers prefer to generate alternative qualitative hypothescs as a
‘ basis for further experiments. If competition vs cooperation, or pump vs diffusion, or genclics R
. ta
. vs enrironment are the sorts of issues at stake, then perhaps simple yes-no experiments are all N
- that are needed. However, even when the focus is on choosing between alternative hypotheses, N
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Guidelines for Modeling

it is often possible to express each alternative quantitatively. For example, suppose you postu-
late that motoneuron death during development is due to either a fixed genetic program or to
lack of target tissue to innervate. Then experiments in which target tissue is decreased or
increased from normal can help decide the issue, and show perhaps a linear relationshsp

between amount of target tissue and number of surviving motoneurons'?.

Curve fitting. The process of modeling will generally result in one or more equations or
graphs, to describe relationships between variables in the experiment. It is appropriate to use
likelihood estimation techniques (often the least squares method) for finding the best values of
parameters in the equations. There is a considerable literature on the subject of curve fitting
(see Daniel & Wood®, for example). The reader should be cautioned, however, about some of
the more ambitious aims of curve fitting, beyond parameter estimation. In particular, it is pos-
sible to work with a set of input-output data by making the data fit a linear, logarithmic, or
power relationship, or finding some polynomial to approximate it. We think that this latter
use of curve fitting is to be avoided, because if a researcher must resort to devising model equa-
tions directly from the data, without a mechanism for supporting explanation, then the model-
ing process may again be premature. This is not to say that much literature on mathematical
modeling does not emphasize such mechanism-independent exercisos.in problem solving, often
for the good reason that some urgent need exists to predict the future course of some (usnally
economic) process -- see 1, 2, 3, 26, for example. Because modeling is applied to such a wide
range of phenomena, from sociology to physics, some judgment--often common sense--is needed

to choose approaches useful for neurophysiology research.

Statistical testing of hypotheses. None of the above remarks should be construed as

discouragement from examining the quality of output data by use of various statistical tests,
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Guidelines for Modeling

such as Chi-square. The reader should bear in mind, however, that, in general, such tests have
little to do with formulating models, and that the hypotheses they test are often the computa-
tional result of generating simulation data from a true model. In the case of statistical ana-
lyses, computational formulas are necessarily independent of particular models. Of course,
there are borderline cases. For example in deciding about the quantal nature of transmitter
release from vesicles the Potsson probability calculation served as a test for the mechanism, not

just as a means of analyzing the datall,

Linear System Theory. This is a category of formalism which can tempt modelers of
the CNS38. By collecting responses to step and sinusoidal inputs, then finding what combina-
tions of linear differential elements can approximate the transient and steady state responses,
rescarchers can fill in the “‘black box”. Linear system theory emphasizes creating a set of first

. . . . o
order differential equations to describe a process!>3%,

Once such a system is devised, the need
is created to seek neural integrators, differentiators, filters and amplifiers in the neural tissue.
To its credit. linear system theory has provided a number of useful models, especially in motor
control, particularly eye movements>?%, On the whole, we view this black box approach as
useful only if basic mechanisms suggest that reasonably linear elements may actually be part of

a neuronal assembly.

Control of Stimuli. In some cases (for example, determining whether a certain general
environment has a positive effect on development of cortical thickness3!) the rescarcher has
relatively little control over all the stimuli directly relevant to the output observed. Even pre-

cisely controllable sensory stimuli, such as visual patterns on a screen!®

, may be several
synapses away from the input fibers to neocortex the experimenter may really want to control.

Those contemplating a model for a process should have at least some hope that the immediate
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inputs to the process can be known, and controlled. Otherwise, time may be better spent
achieving such control, instead of inferring or guessing about the inputs to a model.
s Modeling should be attempted when a mechanism (or af least a simple relationship) sug-
gests itsell as an explanation for trends in output data. Modeling is a way to move beyond
.(f linguistic labels for phenomena, beyond curve fitting of results, beyond black boxes, to an

) understanding and a way to fest that understanding. Perhaps a model’s highest calling is not

to attempt premature explanations of too little data, but to synthesize new meaning from too

much, conflicting, data®. Whether an attempt at modeling is successful may be decided by

some of the issues addressed in the next section.

2. To Begin Modeling.

On the one hand, modeling can conjure visions of large-scale or small-scale replicas of the

object under study. LEven if mechanical or biochemical versions are replaced by electronic com-

ponents, the resulting hardware model represents an extreme philosophy -- that the model

should realistically duplicate as many features as possible of the object or process of interest.

On the other hand, the power of mathematical thinking to deal in abstractions can be car-

ried to extreme. The process to be modeled can be considered an example of a general concept,

requiring all aspects of the process to be converted to the formalism of the theory, often caus-

ing the original object to be greatly distorted. Linear system or sequential computer theory are

often the distorting formalisms.

In neurophysiological modeling, it is perhaps unwise to drift to either extreme before more

balanced approaches are worked with. To model the exact cable properties of every branch of

every dendrite in a neuronal assembly, or to consider that some region of neo-cortex satisfies all
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' the axioms of an algebraic vector field may be justified only if the input-output relationships of "l
the relevant individual neurons have become well understood. =
* :
In this section we will consider the modest goal of starting a modeling project at one level, K
| and in section 4 we will develop the notion of hierarchically modeling two or more levels. Here :-
! we first discuss mathematical formulations, especially differential equation forms; then we
. look at fluctuations in data, mechanisms for explanation, and end with a caution about ’
\ anatomical limitations in modeling. L
' Models can be started in two ways, which are basically equivalent, and which should con-
. verge to the same final form. First consider the data from experiments. If variability is (at .
A least temporarily) removed, some satisfaction can be gained by finding a simple mathematical L
function to describe the dependent and independent variable’s relationship. We will hope that 3
N the mathematical function describes some physiological process or mechanism which generated ,.
E the data in the first place. Second, consider starting with a list of such processes, and perhaps .
N -
N a “wiring diagram’ which may sequence the action of the processes. A mathematical descrip- :
i tion of thelse processes, plus their arrangement in a wiring diagram, should produce a model "
g ¥
similar to the data-driven one. ':
K
; Unfortunately, either approach, especially the first, suffers from an embarrassment of .
riches. With regard to finding a function to represent a graphic or tabular or time series set of S
N data it is a cliche to say that there are infinite possibilities. Even if there is only a finite set of ‘
orthogonal functions, the choice is still great. Suppose, for example, our output shows a B
.' damped oscillation as a function of time. We could choose a function which is a product of a
“
decaying exponential, and a sinusoid (and gain factor G):
. Y(t) == G * exp(-t/a) * sin( w t) ;
- N
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Guidelines for Modeling

Or we could choose a linear second order differential equation:

2
a%t%+b%+c=f(input, initial conditions)

What's the difference? Y(t) can be a solution to the equation. Generally, however, it is not
explicit how the expression Y(t) depends on the particular input or initial conditions in the
experiment. Presumably this could be dealt with by making G, a, and w more complicated
functions. On a more important level, the second order differential equation is appealing
because it implies that (1) several different input-output curves, or separate experiments, con-
tributed to the formulation, and (2) known rate relationships for underlying biological

processes can simply be added together (linearity assumption).

Let us address the notion of assumptions. Critics of particular models search for unstated,
unrealistic, assumptions the modeler may have made to achieve simplicity. But if if the goal is
to model only one of the responses of a generally complicated neural tissue, simplifying
assumptions made in setting up the model can be crucial to the generality of its success. There
are three levels of assumptions:

(1) that the observed output is at least partly caused or controlled by a particular mechanism,;
(2) that a particular mechanism can be deseribed by a certain equation; (3) that some terms in
an cquation may be inconsequential for computational purposes. The first two kinds of
assumptions are certainly important in the beginning of the modeling process. The third kind

of assumption is dealt with in section 3.

Our emphasis on differential {or difference) equation (DIZ) models has its own assumption:
that we are modeling processes whose outputs (if not parameters) vary as a function of time,

even given steady fnputs. This is what we expect from processes, such as growth, decay,
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diffusion, and oscillation*3®, Expressing relationships in the form of DE's has more physical
descriptive value, but has less of the immediate predictive value of a formula which is a solu-
tion to a DE. Eventually both the DE’s and their solutions should be derived and generated,

but the DE is more properly called a model and the solution is a particular answer.

Fluctuations. Besides uncertainty about underlying processes, biological modelers often
have another problem not usually seen in physical science modeling: physical modeler-
counterparts often do not: considerable variability in data. Much could be written about vari-
ability -- that one person’s noise is another person’s signal, etc., but it is inevitable that in
much neurophysiological research, an experiment performed identically in two preparations can
vields two different results. In beginning a modeling project, then, you must decide what to do
about this variability. The simplest procedure is to average results over trials until noise is
significantly less than signal. This has the disadvantage that you may end up ignoring time
trends or functional subcategories. The specialty of statistical modeling, can be invoked to deal
more carefully with assumptions about variability in results; Gilchrist'® provides a good intro-
duction. Essentially, you can make a decision to treat input or output as a random variable.
What distribution your random variable takes then determines the subsequent statistical
modeling. However, we advise that modelers be cautious about introducing random variables
into their explanations, and instead make an effort to follow a deferministic pathway -- this
should yield simplicity, in the beginning.

What mechanisms and basic laws can be called upon to model neural processes?
Ideally, for reductionists at any rate, everything biological could be explained by fundamental

physics and chemistry--there would be no need even to resort to membrane or synapse or nerve

cell models as basic assumptions. In the absence of this ideal, consider four approaches:
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Analogy. Assume the process to be modeled is like some well-defined mechanical or electr- v

ical element, like a spring or a capacitor. o
(2) Function-from-structure. Usually the physiological or behavioral process can be recorded N

only at a level less microscopic than the underlying anatomical structure, and one can h

devise models, using those substructures, which account for the grosser responses meas- by

ured in the experiment. We will see this approach in the second paper, when assumptions .

about synaptic function are called upon to explain responses of whole nerve cells. [«
(3) Physiological sub-units. Assume all the important inpuls or projections to a certain pro- s

cess can be accounted for. If the physiological operations of these inputs in response to '

the relevant stimuli can be measured and quantified, then these operations can become the 3

mechanisms for the model. This last procedure provides the most hope that the model ¢

can be tested without devising new, more microscopic methods of analysis. We will see it o

at work also in the second paper. g

.
(4) Bottom-up direction. Some neural processes have been well characterized, and are now .

textbook examples--generation and propagation of action potential, release of transmitter, N

characteristics of channels, postsynaptic action of certain transmitters (including potentia-

tion and habituation) etc. By restricting sub-units of the model to these relatively well

understood mechanisms, the foundation of assumptions becomes more solid.

Further considerations about anatomical knowledge in neural modeling. In the E
experiment considered especially in the second paper, a nerve cell or group of cells responds to *
a stimulus, and that response serves as the object of our modeling effort. Being able to inter- :'

N

. A

pret the results of such an experiment depends on knowing something about the input to the &
cells in question. Ideally we would like to know every cell projecting to our target: where their
synapses land in the dendritic tree, whether synapses are excitatory or inhibitory, and whether §
the target cell has any reciprocal connections with its input. In developmental modeling, the »
job may be to predict changes over time in the strength and arrangement of these connections. X
A modeler may encounter frustration if such basic anatomical knowledge is lacking. For exam-
ples, an annoyance of working with invertebrate CNS neurons is that connections must often .-
be inferred from two-clectrode stimulate-and-record experiments instead of direct anatomical
-

tracing--small caliber fibers tangle together in dense neuropils which challenge the skill of neu- Py
roanatomists to unravel*, ::
QY
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Once a wiring diagram is reasonably in hand, one can begin its description by labeling
nodes and branches. The nodes can index the rows and columns of a square matrix, and the
branches can fill in the magnitudes and signs of the matrix elements. For example, if node 3

connects with strength 4 to node 6, element Mj; =4. For further details, see any text on

linear algebra, such as Hoffman & Kunze.

Other help with modeling. Besides the books on case studies 1, 2, 3, 26 cited in Sec-
tion 1, there is a modest literature on basic principles of modeling, for biological and other
fields. We have found Saaty & Alexander® and Cross & Moscardini’ worthwhile introduec-
tions. Note that, especially if a new technique is involved, experiments will seem to generate
new data which require a fresh approach to their understanding. However, the best first step
in starting your model may be not to work with your own results, but to review what others
have done in analogous situations. While this may seem mundane advice, and even frustrat-
ing, considering how fragmented the neural modeling literature is, it should be worthwhile.
Additionally, once your model has been mathematically formulated you may find that other,
different systems have been similarly structured, and solution techniques in those other systems

may be useful to you.

What to hope for as the modeling proceeds. If mechanisms or subunits (primitives)
have been identified, and an approach selected to model them, then the primitives can be
linked together, with structural (anatomical) considerations. The resuit will be a set of vars-
ables and parameters. Values of the parameters need to be estimated. With even modest suc-
cess constructing a tentative model, one becomes ready either for proving theorems about the
model’s solutions, stability, etc., or for simulating its performance. The modeler should keep in

mind the relevance of his work to experimentation. As MacGregor & Lewis®® say, *...the

11
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modeler who does not spell out how his model can be contradicted experimentally has not lived
up to his responsibility..."” (page 391).

Let us conclude this section with an example illustrating limitations in modelling. Con-
sider a problem in neural development, but not one having to do with single unit recording:
how to explain the nﬁgration of neural crest cells, in the embryo. A considerable amount of
information is known about the timing and movement of newly generated cells, and their desti-

23

nations in various parts of the emerging peripheral nervous system and other sites*>. Even

congenital deformities of the face, due to improper development of the neural crest, are known.

What we would like to know, in order to model this activity, is a sequential (and perhaps
recursive) algorithm which instructs the migrating cells. In fact, progress has been made in a
number of regards--structural cues, such as arrangement of glial cells, are known, and chemical
signals, including cell adhesion molecules, seem to have influence. Yet, this information does
not seem to be sufficient to suggest any particular growth algorithm. Important qualitative
issues remain unsolved: Is the movement active or passive? What role does genetics play,
independent of environment? What are the signals for stopping movement? Partly the prob-
lem is that simulation of the model would have to generate a three dimensional pattern of cell
movement, a difficult enough problem in computer graphics, where an tnstruction set is pro-
vided, and a virtually hopeless problem when, in the neural crest case, the instruction set can
only be guessed at. Another limitation for neural modellers is that migrating crest cells have
not formed a synaptic information network, and the understandings from dealing with such a
network are not available.

Basically, attempts to quantitatively model neural crest cell migration would be prema-

ture®®. The best research direction is toward further observations of migration, while
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systematically manipulating the environment in which the migration takes place. In vitro sys-
tems which mimic the embryo in vivo would, according to LeDourain®®, provide the necessary

breakthrough.
3. A Guide to Simulation Techniques and Error Analysis

Modeling by itsell is worthwhile because the effort to model will require a researcher to
confront the data and devise mechanistic explanations. However, the value of 2 model will
increase when it is used to determine results from hypothetical inputs. If the model’s output
can be easily calculated by hand, so much the better; but often the model's performance must
be simulated. How much eflort should the researcher devote to methods of simulation? We
think the effort should be minimal. This means, in practice, that almost anyone can avoid
excessive programming by using general purpose simulation packages. In this section we are
not going to review the simulation techniques themselves -- rather we wiil offer a brief guide to
software available on various levels of hardware. It should be noted that some of the software
- especially at the workstation level - is user-friendly: once a model has been laid out and an
input specified, the computer will do everything required to give a graphical output without the

user having to specify or understand the simulation technique.

The most succinct advice we can offer about simulation is this: Nearly all main-
frame systems in scientific establishments have available the IMSL Inc. library of
routines. The documentation for IMSL should be investigated as a first step'*. The

main IMSL Library has over 500 Fortran subroutines, organized into three categories:

Y This 15 not meant to sound hke an uocritical advertisement for IMSL, use of their routines has its owan limitations. However, INSL
stands aloge as the main commercializer of this special software
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(1) Mathematics
Interpolation, approximation & smoothing
Differential equation solvers
Eigensystem analysis '
Linear Algebraic equations--solutions

[
-

Linear Programming %
Non-linear equations
Optimization B
: Transforms--FFT and inverse Laplace o
Vector & Matrix arithmetic “
q
(2) Statistics i
Basic statistics--estimates of mean & variance, correlation, etc. =
Analysis of variance :
Categorized data analysis--contingency tables, life tables -
Non-parametric statistics -
Multivariate statistics, including maximum likelihood estimation )
Regression analysis
Sampling (random) w